skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oldham, Kenn_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This work introduces a mixed‐transducer micro‐origami to achieve efficient vibration, controllable motion, and decoupled sensing. Existing micro‐origami systems tend to have only one type of transducer (actuator/sensor), which limits their versatility and functionality because any given transducer system has a narrow range of advantageous working conditions. However, it is possible to harness the benefit of different micro‐transducer systems to enhance the performance of functional micro‐origami. More specifically, this work introduces a micro‐origami system that can integrate the advantages of three transducer systems: strained morph (SM) systems, polymer based electro‐thermal (ET) systems, and thin‐film lead zirconate titanate (PZT) systems. A versatile photolithography fabrication process is introduced to build this mixed‐transducer micro‐origami system, and their performance is investigated through experiments and simulation models. This work shows that mixed‐transducer micro‐origami can achieve power efficient vibration with high frequency, large vibration ranges, and little degradation; can produce decoupled folding motion with good controllability; and can accomplish simultaneous sensing and actuation to detect and interact with external environments and small‐scale samples. The superior performance of mixed‐transducer micro‐origami systems makes them promising tools for micro‐manipulation, micro‐assembly, biomedical probes, self‐sensing metamaterials, and more. 
    more » « less